Odwracanie macierzy to poważny problem (szczególnie dla studentów). Z tego powodu udostępniamy nasz kod C++ pozwalający na łatwe, szybkie i przyjemne odwrócenie macierzy kwadratowej o różnym wymiarze. Zaimplementowane zostały dwa popularne algorytmy: Gaussian elimination oraz LU decomposition(factorization) . Z oczywistych względów polecamy korzystanie z tego drugiego. Użycie jest bardzo łatwe. Wystarczy dowolną tablicę o rozmiarze N * N (gdzie N jest rozmiarem wiersza lub kolumny) , w postaci wskaźnika przekazać w sposób następujący:
1 2 3 4 5 |
<typ> X[N * N]; // gdzie <typ> to double/float/int/... sophisticatedAlgebra::Inverter<typ, N>::gaussian(X); //LU //albo sophisticatedAlgebra::Inverter<typ, N>::lu(X); //LU |
Obliczenia zostaną wykonane w miejscu, więc zawartość tablicy X zostanie nadpisana.
Oto nagłówek, zawierający niezbędny kod:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
#ifndef INVERTER_H #define INVERTER_H #include <cmath> namespace sophisticatedAlgebra { template <typename T> T sgn(const T& val) { if (val >= static_cast<T>(0)) { return static_cast<T>(1); } else { return static_cast<T>(-1); } } template <typename T, int N> class Inverter { public: static void gaussian(T* X) { T a[(2 * N) + 1][(2 * N) + 1]; T d = 0; for (int i = 0; i < 2 * N + 1; ++i) { for (int j = 0; j < 2 * N + 1; ++j) { a[i][j] = 0; } } for (int i = 1; i <= N; i++) { for (int j = 1; j <= 2 * N; j++) { if (j == (i + N)) { a[i][j] = 1; } } } for (int i = 1; i <= N; ++i) { for (int j = 1; j <= N; ++j) { a[i][j] = X[j - 1 + (i - 1) * N]; } } for (int i = N; i > 1; --i) { if (a[i - 1][1] < a[i][1]) { for (int j = 1; j <= N * 2; ++j) { d = a[i][j]; a[i][j] = a[i - 1][j]; a[i - 1][j] = d; } } } for (int i = 1; i <= N; ++i) { for (int j = 1; j <= N * 2; ++j) { if (j != i) { d = a[j][i] / a[i][i]; for (int k = 1; k <= N * 2; ++k) { a[j][k] = a[j][k] - (a[i][k] * d); } } } } for (int i = 1; i <= N; ++i) { d = a[i][i]; for (int j = 1; j <= N * 2; ++j) { a[i][j] /= d; } } for (int i = 1; i <= N; ++i) { for (int j = N + 1; j <= N * 2; ++j) { X[j - (N + 1) + (i - 1) * N] = a[i][j]; } } } static void lu(T* X) { T Z[N][N]; T lower[N][N]; T upper[N][N]; T I[N][N]; for (int column = 0; column < N; ++column) { for (int row = 0; row < N; ++row) { Z[column][row] = 0; if (column == row) { I[column][row] = 1; } else { I[column][row] = 0; } } } luDecomposition(X, lower, upper); for (int column = 0; column < N; ++column) { for (int row = 0; row < N; ++row) { Z[row][column] = valZ(lower, upper, I, Z, row, column); } } for (int column = 0; column < N; ++column) { for (int row = N - 1; row >= 0; --row) { X[column + row * N] = inversal(upper, X, Z, row, column); } } } private: static void luDecomposition(T *X, T lower[N][N], T upper[N][N]) { for (int row = 0; row < N; ++row) { for (int column = 0; column < N; ++column) { if (column < row) { lower[column][row] = 0; } else { lower[column][row] = X[row + column * N]; for (int k = 0; k < row; ++k) { lower[column][row] = lower[column][row] - lower[column][k] * upper[k][row]; } } } for (int column = 0; column < N; ++column) { if (column < row) { upper[row][column] = 0; } else if (column == row) { upper[row][column] = 1; } else { upper[row][column] = X[row + column * N] / lower[row][row]; for (int k = 0; k < row; k++) { upper[row][column] = upper[row][column] - ((lower[row][k] * upper[k][column]) / lower[row][row]); } } } } } static T valZ(const T lower[N][N], const T upper[N][N], const T I[N][N], const T Z[N][N], int row, int column) { T sum = 0; for (int i = 0; i < N; i++) { if (i != row) { sum += lower[row][i] * Z[i][column]; } } T result = I[row][column] - sum; result = result / lower[row][row]; return result; } static T inversal(const T upper[N][N], const T* inversed, const T Z[N][N], int row, int column) { T sum = 0; for (int i = 0; i < N; i++) { if (i != row) { sum += upper[row][i] * inversed[column + i * N]; } } T result = Z[row][column] - sum; result = result / upper[row][row]; return result; } }; template <typename T> class Inverter<T, 0> { static void gaussian(T* X) {} static void lu(T* X) {} }; template <typename T> class Inverter<T, 1> { static void gaussian(T* X) { X[0] = static_cast<T>(1) / X[0]; } static void lu(T* X) { gaussian(X); } }; template <typename T> class Inverter<T, 2> { static void gaussian(T* X) { T determinant; T adjoint[4]; adjoint[0] = X[3]; adjoint[1] = -X[1]; adjoint[2] = -X[2]; adjoint[3] = X[0]; determinant = X[0] * adjoint[0] + X[1] * adjoint[2]; determinant = static_cast<T>(1) / determinant; X[0] = adjoint[0] * determinant; X[1] = adjoint[1] * determinant; X[2] = adjoint[2] * determinant; X[3] = adjoint[3] * determinant; } static void lu(T* X) { gaussian(X); } }; template <typename T> class Inverter<T, 3> { static void gaussian(T* X) { T determinant; T adjoint[9]; adjoint[0] = X[4] * X[8] - X[5] * X[7]; adjoint[1] = -X[1] * X[8] + X[2] * X[7]; adjoint[2] = X[1] * X[5] - X[2] * X[4]; adjoint[3] = -X[3] * X[8] + X[5] * X[6]; adjoint[4] = X[0] * X[8] - X[2] * X[6]; adjoint[5] = -X[0] * X[5] + X[2] * X[3]; adjoint[6] = X[3] * X[7] - X[4] * X[6]; adjoint[7] = -X[0] * X[7] + X[1] * X[6]; adjoint[8] = X[0] * X[4] - X[1] * X[3]; determinant = X[0] * adjoint[0] + X[1] * adjoint[3] + X[2] * adjoint[6]; determinant = static_cast<T>(1) / determinant; X[0] = adjoint[0] * determinant; X[1] = adjoint[1] * determinant; X[2] = adjoint[2] * determinant; X[3] = adjoint[3] * determinant; X[4] = adjoint[4] * determinant; X[5] = adjoint[5] * determinant; X[6] = adjoint[6] * determinant; X[7] = adjoint[7] * determinant; X[8] = adjoint[8] * determinant; } static void lu(T* X) { gaussian(X); } }; } #endif |
Miłej laborki 🙂
PS. Jeżeli wersja Gaussian elimination produkuje błędne wyniki, to jest to zwykle błąd numeryczny, na który ta metoda jest bardzo wrażliwa. To jeden z wielu powodów żeby wybrać LU decomposition.